Journal of Organometallic Chemistry, 133 (1977) 359–375 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CONTRIBUTION A L'ETUDE DES METALLOCENES

XXVIII *. REDUCTION DE CETONES CYCLIQUES EN SERIES DU FERROCENE ET DU CYMANTRENE. ETUDE DE LA STEREOSPECIFICITE. ASSIGNATION DES CONFIGURATIONS endo OU exo DES ALCOOLS DERIVES **

MARYVONNE LE PLOUZENNEC * et RENE DABARD

Laboratoire de Chimie des Organométalliques, E.R.A. C.N.R.S. no. 477 Université de Rennes, 35031 Rennes Cédex (France)

(Reçu le 9 décembre 1976)

Summary

The reduction of various 2,3-ferroceno-1-indanones and 1,2-(α -oxotetramethylene)-methylcymantrenes by metal hydrides or Grignard reagents is stereospecific, except for LiAlH₄, the observed stereoselectivity being in all uses more than 95%. The *endo* configuration of the dominant alcohol is established from TLC, IR, RMN and mass data. These criteria for the assignment of the structure of these alcohols are shown to be general.

Résumé

La réduction de diverses ferrocéno-2,3 indanones-1 et (α -oxotétramethylène)-1,2 méthylcymantrènes par les hydrures métalliques ou les réactifs de Grignard se révèle stéréospécifique, sauf pour LiAlH₄, pour lequel le taux de stéréosélectivité est toutefois supérieur à 95%. La configuration *endo* de l'alcool majoritaire est établie sur la base de caractéristiques CCM, IR, RMN et de masse. Le caractère général des critères d'assignation des structures des alcools est démontré.

Introduction

La réduction d'une fonction insaturée sur un cycle *ortho*-condensé à un noyau métallocénique constitue une voie d'accès potentielle à des couples de composés

** Mémoire ultime extrait de la thèse de Doctorat es Sciences Physiques présentée par Maryvonne Le Plouzennec et enregistrée au C.N.R.S. sous le numéro AO 6412.

^{*} Précédent mémoire de cette série, voir réf. 33.

présentant un type d'isomérie *cis—trans*, désignée dans ces séries par les termes endo (cis) et exo (trans).

Trifan et Bacskai [1] ont synthétisé le premier couple d'alcools endo-exo. les ferrocéno-2,3 cyclohexanols-1 issus de la réduction de la cétone par LiAlH₄, l'isomère endo étant nettement prépondérant dans le mélange (90 : 10). A partir des ferrocéno-2,3 cyclohexanones comme précurseurs métallocéniques, Schlögl [2] a montré que le taux de stéréosélectivité de la réduction qui devient stéréospécifique pour KBH₄, varie avec l'hydrure. En série du benzène chrome tricarbonyle, l'obtention exclusive de l'isomère endo par réduction de cétones cycliques à géométrie différente [3,4] laisse penser que le paramètre stérique n'impose pas seul le sens de l'attaque par l'hydrure; Jaouen et Dabard [3] envisagent un contrôle électronique partiel, lié à un facteur dipolaire, puisque la stéréochimie de la réduction est sensible à la nature dipolaire du substituant [5]. Il était intéressant de comparer ces résultats à ceux relatifs aux ferrocéno-2,3 indanones-1 dont nous avons étudié la réduction par les hydrures et les magnésiens [6]. Nous avons ensuite étendu nos recherches à la série cymantrénique pour laquelle aucune étude n'avait été réalisée en ce sens.

L'attribution des configuration endo—exo des alcools reposait initialement sur des bases exclusives de fréquences IR $\overline{\nu}(OH)$. Des études de fragmentation observées en spectrométrie de masse ont ensuite permis d'apporter d'autres critères. Dans le but de généraliser ceux-ci, nous nous sommes proposés de réaliser une étude d'ensemble des différentes possibilités offertes par l'infra-rouge, la spectrométrie de masse et la RMN dont aucun apport à l'assignation des structures n'était mentionné.

Résultats et discussion

I. Réduction des ferrocéno-2,3 indanones-1 et (α-oxotétraméthylène)-1,2 méthylcymantrènes

1. Action des hydrures métalliques et des réactifs de Grignard. Cette étude révèle, en accord avec les résultats déjà connus en séries ferrocénique [2] et benchrotrénique [3,4,7] la formation extrêmement défavorisée de l'isomère exo aussi bien lors de la réduction des ferrocéno-2,3 indanones-1 (I et II) que lors de

\$

(I)

(IIa) X = Cl-7; (IIb) X = Cl-6

 (Π)

Les différents essais réalisés avec KBH_4 , $NaBH_4$ et $LiAlH_4$ différencient toutefois les deux premiers hydrures du dernier. La réduction par KBH_4 en solution hydrométhanolique et celle par $NaBH_4$ dans la pyridine sont stéréospécifiques. Les ferrocéno-2,3 indanones (I et II) conduisent aux ferrocéno-2,3 indanols-1 endo (III et IV), l'(α -oxotétraméthylène)-1,2 méthyl-3 cymantrène et les (α -oxo-

l) endo

(IVa) X = Cl-7; (IVb) X = Cl-6

diméthyltétraméthylène)-1,2 méthylcymantrènes [8] aux alcools endo correspondants, respectivement V, VI et VII.

Il semble donc possible de conclure au caractère général de la stéréospécificité de la réduction, par KBH_4 et $NaBH_4$, d'une fonction carbonyle appartenant à un cycle *ortho*-condensé à un noyau métallocénique.

L'hydrure double d'aluminium et de lithium se révèle un réducteur moins sélectif puisque lors de son action sur la cétone I on constate, outre celle de l'alcool endo III présent dans le mélange à environ 95%, la formation de l'isomère exo, le ferrocéno-2,3 indanol-1 exo (VIII) en quantité inférieure à celle notée pour le ferrocéno-2,3 cyclohexanol-1 exo (10%) [1,2a]. Ces proportions sont encore plus faibles en série cymantrénique pour la quelle on relève la présence de l'isomère exo IX, à l'état de traces dans le "brut" de la réaction entre l'(α -oxo-

^{*} Pour la synthèse de ces composés, voir la réf. 8.

tétraméthylène)-1,2 méthyl-3 cymantrène et LiAlH₄. L'isomère *exo* correspondant à l'alcool *endo* VIIb n'a pu être mis en évidence lors de la réduction de l' α -oxo β , β -diméthyltétraméthylène)-1,2 méthyl-4 cymantrène par LiAlH₄. L'analyse CCM comme l'étude IR n'ont révélé que la présence de VIIb. Or pour cette structure, la fonction carbonyle est nettement plus encombrée que pour la cétone non diméthylée; bien que cet encombrement concerne les deux faces du noyau cyclopentadiényle, l'augmentation de celui-ci sur la face liée au métal, déjà encombrée, suffit à rendre totale la quasi-stéréospécificité observée pour la cétone non méthylée. De même, en série ferrocénique, à un carbonyle moins dégagé correspond un abaissement de la quantité d'isomère *exo* formée; il semble donc que même si l'effet stérique n'est pas seul déterminant, dans l'éventualité d'un contrôle électronique partiel envisagée par Jaouen et Dabard, le sens de l'attaque du carbonyle par l'hydrure, qui se fait préférentiellement du côté le moins encombré, dépende de la conjoncture stérique.

(<u>∇</u>∏) exo

(IX)

L'action des réactifs magnésiens est caractérisée par la même stéréospécificité que celle observée pour KBH₄ et NaBH₄.

(X, XI, XII)(Xa) R = Ph, X = H; (Xb) R = Ph, X = .Cl-7 (Xla) R = Th, X = H; (Xlb) R = Th, X = Cl-7 (XII) R = CH₃, X = H

Le bromure de phénylmagnésium réagit avec les cétones I et IIa avec forma-

tion exclusive des isomères endo correspondants, les ferrocéno-2,3 phényl-1 indanol-1 (Xa) et chloro-7 ferrocéno-2,3 phényl-1 indanol-1 (Xb); de même, l'action du bromure de thiénylmagnésium sur ces deux mêmes cétones donne les ferrocéno-2,3 thiényl-1 indanol-1 (XIa) et chloro-7 ferrocéno-2,3 thiényl-1 indanol-1 (XIb), endo. Enfin, l'action de l'iodure de méthylmagnésium sur la cétone I et les (α -oxotétraméthylène)-1,2 méthyl-5 cymantrène et α -oxo β , β -diméthyltétraméthylène)-1,2 méthyl-5 cymantrène conduit au ferrocéno-2,3 méthyl-1 indanol-1 endo (XII) et aux alcools cymantréniques endo XIII et XIV.

2. Accès aux alcools exo à partir de leurs isomères endo. Au cours d'études sur l'hydrolyse des acétates dérivés des ferrocéno-2,3 cyclohexanols-1, endo et exo, Trifan et Bacskai [1] et Hill et Richards [9] ont constaté que ces essais, réalisés en milieu eau/acétone, conduisent, quel que soit l'acétate de départ à l'alcool exo. Nous avons exploité cette propriété de l'acétate endo de mener à l'alcool exo par hydrolyse en milieu eau/acétone, en l'appliquant au cas du ferrocéno-2,3 indanol-1 (III). Cet alcool donne très facilement l'acétate correspondant par action, à température ambiante, de l'anhydride acétique en présence de pyridine. L'hydrolyse de cet acétate par le mélange acétone/eau à 80% d'acétone, maintenu à ébullition, mène exclusivement à l'alcool VIII. Cet alcool est en tout point identique (études CCM, IR et RMN) à celui précédemment isolé en faible quantité lors de la réduction, par LiAlH₄, de la ferrocéno-2,3 indanone-1 (I).

L'application de cette méthode à la série cymantrénique s'avère inefficace. Il nous a été impossible d'hydrolyser par le mélange eau/acétone en diverses proportions les acétates issus des alcools V et VIIb.

L'action de AlCl₃ en solution éthérée sur l'alcool *endo* dans le dichloroéthane, voie d'accès à l'isomère *exo* mise au point par Dixneuf [10] ou celle de l'acide HPF₆ en solution éthérée ont été également testées sans succès. Aucune transformation de l'alcool, hormis sa déshydratation, dans le cas du composé V, n'a été constatée, ni par CCM ni par infra-rouge. Si on augmente le temps de contact avant hydrolyse, la déshydratation de l'alcool V est totale. Le spectre IR ne présente plus de bandes OH mais possède une bande —CH = CH— à 3050 cm⁻¹ et en CCM on décèle uniquement le produit de déshydratation qui migre en front de solvant. Nous avons alors tenté l'hydrolyse basique des acétates *endo*, mais comme en série du fluorène chrome tricarbonyle [11] ces esters mènent alors aux alcools *endo* précurseurs.

L'impossibilité d'accéder aux alcools *exo* en série cymantrénique, à partir des isomères *endo*, doit trouver son explication dans des considérations de stabilité

de l'intermédiaire ionique susceptible de prendre naissance. Les ions " α -ferrocényl carbonium" sont en effet remarquablement stables et diverses structures ont été proposées pour rendre compte de cette stabilité; elles envisagent la stabilisation par interaction du centre carbonium soit directement avec le métal [12-16] soit par conjugaison avec le cycle cyclopentadiényle [17]. L'échec observé en série cymantrénique doit être imputable à l'instabilité des ions "carbonium" correspondant aux structures étudiées. Les faibles rendements (10%) signalés pour la solvolyse des acétates *endo* en série du fluorène chrome tricarbonyle [11] étayent cette interprétation. En effet, dans cette série, les ions "carbonium" sont stabilisés par la forte densité électronique qui existe sur le cycle non chrome tricarbonylé; ils sont, quoique moins stables que ceux du ferrocène, ainsi qu'il ressort d'études de $pK(\mathbb{R}^+)$ [18,19] vraisemblablement de stabilité supérieure à ceux du cymantrène. Ceux-ci se sont en effet révélés peu stabilisés [20-22] or certains de ces ions (CMT-CHPh) bénéficient pourtant de la présence du groupement phényle.

Le succès de l'hydrolyse des acétates en milieu fortement basique n'est évidemment pas en contradiction avec ces conclusions. Comme le prouve la rétention de configuration observée, il y a rupture de la liaison $O-COCH_3$ et non passage par un ion carbonium intermédiaire.

II. Assignation de la configuration des alcools

Les divers moyens d'identification sont liés à l'existence de liaisons hydrogène différentes selon que l'hydroxyle est situé en *endo* ou en *exo* [23]. En effet, les études portant sur la liaison métal—cycle conduisent à penser que les électrons π du cycle cyclopentadiényle sont partiellement déplacés vers l'atome métallique. Pour un OH "*endo*", l'interaction se fait principalement avec le nuage d'électrons π entourant le métal et est une liaison forte; pour un OH "*exo*", il faut envisager une "liaison hydrogène" faible avec les électrons π encore disponibles sur le cycle cyclopentadiényle ou même, dans le cas des ferrocéno-2,3 indanols-1, avec ceux du noyau benzénique. Il doit en résulter des différences significatives des R_F ou des spectres IR, RMN et de masse.

1. Analyse par chromatographie couche mince. L'isomère endo doit être moins retenu par le gel de silice que l'isomère exo [9,24,25]. On constate que les R_f (benzène anhydre) des alcools III et V (0.35 et 0.30) sont respectivement supérieurs à ceux de VIII et IX (0.25 et 0.20). Ces résultats laissent prévoir une structure endo pour les composés III et V et exo pour $\sqrt[3]{11}$ et IX.

2. Spectrophotométrie infra-rouge. Les essais d'effet de dilution, effectués pour tenter de différencier les "liaisons hydrogène" dans les composés endo et exo, mettent en évidence le caractère intramoléculaire de ces interactions; la fréquence attendue pour la bande d'absorption OH de l'alcool endo étant inférieure à celle de l'isomère exo, les valeurs $\overline{\nu}(OH)$ constituent une caractéristique de la configuration endo ou exo.

Trifan et Bacskai [23], Hill et Richards [9] ou Schlögl [2b] ont montré, dans le cas des ferrocéno-2,3 cyclohexanols-1, que l'isomère *endo* présente deux bandes d'absorption, l'une forte à 3561 cm⁻¹, l'autre faible, à 3615 cm⁻¹, alors que l'isomère *exo* absorbe à 3610 cm⁻¹. Les valeurs annoncées par Jackson et McMullen [26] et Jaouen et Dabard [3] en série du benchrotrène, sont analogues.

Les fréquences que nous avons observées pour les divers ferrocéno-2,3 inda-

nols-1 (Tableau 1) sont en accord avec ces données et permettent de conclure, sur ces seules bases, soit à la structure *exo* pour le composé VIII soit à la structure *endo* pour tous les autres alcools.

La bande de faible intensité présente à 3617 cm⁻¹ pour III et à 3615 cm⁻¹ pour IVa et IVb correspond, selon toute vraisemblance, à un OH lié aux électrons π d'un des cycles, ferrocénique substitué ou benzénique: la valeur de ces fréquences est en effet inférieure à celle indiquée (3630 cm⁻¹) en série ferrocénique, pour un OH libre de toute association [23]; l'étude RMN montre que cette liaison est établie avec le cycle ferrocénique.

Des résultats tout à fait analogues sont observés en série du cymantrène. Dans cette série, les alcools *endo* présentant deux bandes situées aux environs de 3615 et 3670 cm⁻¹, alors que le spectre de l'alcool *exo* IX présente une seule bande à 3610 cm⁻¹, avec un épaulement à 3623 cm⁻¹ (Tableau 2).

Certaines différences apparaissent entre les spectres des ferrocéno-2,3 indanols-1 et ceux des (α -hydroxytétraméthylène)-1,2 méthylcymantrènes.

C'est ainsi que la bande OH de l'isomère exo, en série du ferrocène, ne présente pas l'épaulement, présent à 3623 cm⁻¹ pour l'alcool cymantrénique, qui correspond vraisemblablement à un OH libre de toute association. Les essais de dilution n'ont toutefois pas apporté de modifications sensibles au spectre.

En outre, les bandes vers 3615 cm⁻¹ sont en général plus importantes pour les dérivés du cymantrène que pour ceux du ferrocène. Le maintien d'une bande ou d'un épaulement à 3615 cm⁻¹, constaté pour les spectres des alcools tertiaires cymantréniques contrairement aux caractéristiques des isologues ferrocéniques, indique que la proportion d'hydroxyle engagé dans la liaison avec les électrons entourant le métal est moins importante en série cymantrénique qu'en série ferrocénique.

3. Spectrométrie RMN. Cette étude met en évidence certaines différences essentielles, concernant les signaux des cycles cyclopentadiényles non substitués (hétérosignal) et ceux des protons hydroxyliques et méthiniques des ferrocéno-2,3 indanols-1 endo et exo, pour des spectres enregistrés dans des conditions voisines de concentration (Tableau 3).

Le spectre du ferrocéno-2,3 indanol-1 *endo* (III) présente un hétérosignal déplacé de 0.16 ppm vers les champs faibles, par rapport à celui de l'isomère *exo*. Ce phénomène n'existant pas pour les acétates *endo* et *exo* correspondants, cette constatation trouve son interprétation dans l'existence de la liaison hydrogène entre l'hydroxyle situé en *endo* et les électrons π du cycle cyclopentadiényle non substitué, déplacés vers l'atome de fer.

TABLEAU 1

FREQUENCES IR $\overline{\nu}$ (OH) (cm⁻¹) DES FERROCENO-2,3 INDANOLS-1

ft: bande forte; fb: bande faible; solvant: CCl4

	VIII	111	IVa	IVb	Xa	ХЪ	хір	XII
$\overline{\nu}$ (OH) (cm ⁻¹)	3608	3569 ft 3617 fb	3570 ft 3615 fb	3570 ft 3615 fb	3569	3570	3571	3568

FREQUE	NCES IR $\overline{\nu}$	OH) (cm ⁻¹) DES AL	COOLS C	YMANTRI	ENIQUES			но на селото По селото селото на селото на По селото на селото н По селото на
e: épzulei	ment: m: int	ensitė moy	venne; solv	ant: CCl ₄			· .		
	v	IX	VЉ	VIc	VIIa	VIIb	Vile	XIII	XIV
v (OH) (cm ⁻¹)	3616 ft	3623 e	3612 ft	3610 ft	3612 m	3616 ft	3612 fb	3603 e	3616 і́ ь
	3577 ft	3610 ft	3584 e	3568 ft	3565 ft	3577 ft	3562 ft	3581 ft	3575 ft

Les protons hydroxyliques et méthiniques sont couplés $(J \ 10 \ Hz)$ pour l'alcool endo III alors que pour l'isomère exo VIII, le spectre présente pour chacun de ces protons un multiplet mal résolu. Cette particularité est imputable au phénomène d'échange, lié à une possibilité de liaison intermoléculaire dans l'alcool exo.

De plus, les protons méthiniques résonnent à des champs nettement différents dans les deux composés *endo* et *exo*. Le signal relatif au proton de l'isomère *exo* est déplacé de 0.38 ppm vers les champs faibles par rapport à celui de l'isomère *endo*. Cet exemple illustre la résonance à champ faible des protons situés entre les plans des deux noyaux cyclopentadiényles [10,27].

L'étude de l'influence de la dilution, réalisée sur les ferrocéno-2,3 indanols-1 endo (III) et exo (VIII) révèle que le spectre de l'un des isomères, celui de l'alcool exo, est beaucoup plus profondément modifié par celle-ci. Les différences essentielles concernent les signaux des protons du cycle cyclopentadiényle substitué et ceux des protons méthiniques et hydroxyliques.

Les déplacements de plus en plus grands vers les champs faibles, observés pour les signaux des trois protons cyclopentadiéniques de l'isomère *exo*, sont en faveur du site "*exo*" proposé pour l'hydroxyle. De plus, ils apportent la preuve d'une liaison OH—cycle cyclopentadiényle puisque le signal des protons du noyau benzénique n'est pas sensible à la dilution. Cette conclusion permet de préciser la direction prise par la liaison C—OH dans l'espace. Il est intéressant d'établir le parallèle avec les résultats de l'étude IR. La fréquence de 3608 cm⁻¹, relevée pour le composé exo VIII correspond bien à un OH- π lié et non à un OH libre. On peut raisonnablement admettre qu'il en est de même pour celle de 3617 cm⁻¹, notée dans l'*endo* III.

L'influence de la dilution est également sensible sur le signal du proton méthinique du produit VIII. Ce signal est déplacé vers les champs failles et révèle un couplage de plus en plus net entre les protons méthinique et hydroxylique. On constate ainsi l'influence du OH, progressivement libéré des liaisons intermoléculaires. Ceci est en faveur de la structure *exo* pour le composé VIII. Enfin, les déplacements des signaux hydroxyliques observés en fonction de la dilution diffèrent par leur importance, celui relatif à l'alcool *endo* étant négligeable par rapport à celui constaté pour l'isomére *exo*.

Les différents points de cette discussion permettent donc d'élucider la structure des produits étudiés et de mettre en évidence les deux types de liaison hydrogène intramoléculaire.

TABLEAU 2

TABLEAU 3 CARACTERISTIQUES RMN DES ALCOOLS III, IVa et VIII a

					;									
Composé	Concentra- tion (mg ml ⁻¹)	Noyau benzénie	au	II méthi.	nique		Cycle cy	clopen-	Cycle cy	clopen-	Proton h	ydroxyllqı	16	1
				m/i	ą	J(Hz)	substitué		substitue	11011 2	m/i	8	J(Hz)	1
	a mana an	1/11	с [.]				m/i	9	m/i	5				
ш	200	m/4	7.20	d/1	5,20	10	1/m 1/m	4.59 4.41 4.30	s/5	4.03	d/1	2.21	10	1
	100	m/4	7.20	1/p	5,20	10	d/1 1/m	4.59 4.41 4.30	s/5	4.03	d/1	2.17	10	
	50	m/4	7.20	1/ p	5,20	10	d/1 1/m 1/m	4,59 4,41 4,30	s/5	4,03	ſ/þ	2.11	10	
IIIV	200	m/4	7.20	dm/1	5,58		4/1 4/1 1/5	4.58 4.40 4.20	s/b	3.87	dm/1	2.32		
	100	m/4	7.20	1/*b	5,61	3.5	d/1 1/b 1/1	4.60 4.44 4.23	s/5	3,87	1/p	2.12	3.5	
	50	m/4	7.20	l/b	5,6 5	9	L/p 1/p	4.63 4.47 4.26	s/5	3,88	d/1	1.93	9	
IVa	200	t/1 d/2	7.38 7.15	۲/p	5,15	10	d/1 m/1 m/1	4.67 4.40 4.30	s/5	4.03	d/1	2.21	10	
a d: doublet	: dm: doublet multir	olet: d#: do	ublet mal	résolu.										1

367

.

									1
Composé	Noyau benzén	ique	Noyau tadiény stitué	cyclopen- le sub-	Noyau tadién substit	yle non vié	Proton	a bydroxylique	
Xa, R = Ph	m/9	7.17	m/1	4.60	s/5	4.03	s/1	3.03	
			q/2	4.27					
			<u>d/1</u>	4.60					
XIa, R = Th	m/4	7.18	d/1	4.40	s/5	4.05	s/1	3.15	
			m/1	4.30					
VIL D - TL	t/1	7.36	q/1	4.61	-15	4 10	c/1	317	
A10, R - 10	m/2	7.16	m/2	4.36	5/5	4.10	5/1	0.17	
XII, R = CH3			d/1	4.53					
(200 mg ml ⁻¹)	m/4	7.17	d/1	4.38	s/5	4.01	s/1	2.56	
			q/1	4.27					
(100 mg ml^{-1})	••			••	••	••	s/1	2.51	
(50 mg m ⁻¹)	••		••	••	••	**	s/1	2.46	

CARACTÉRISTIQUES RMN ($i/m \text{ et } \delta$) DES ALCOOLS X-XII

L'application des critères dégagés de la comparaison des caractéristiques RMN des ferrocéno-2,3 indanols-1 *endo* et *exo* suffit à préciser la configuration d'un alcool même en l'absence de son isomère. C'est ainsi que les caractéristiques relevées pour les ferrocéno-2,3 aryl-1 ou méthyl-1 indanols-1 (Tableau 4) sont en faveur d'une structure *endo*.

Les résultats obtenus pour les (α -hydroxytétraméthylène)-1,2 méthylcymantrènes (Tableau 5) s'interprètent aisément sur la base des conclusions de l'étude réalisée en série ferrocénique, dont la transposition à la série du cymantrène se révèle efficace.

Deux faits essentiels se dégagent en effet de l'ensemble des caractéristiques: le couplage très net observé entre les protons méthinique et hydroxylique des alcools secondaires dont les spectres présentent, pour chacun de ces protons, un doublet parfaitement résolu (J 7 Hz) et l'absence de modifications sensibles des spectres apportées par dilution. Ces deux arguments permettent d'attribuer sans ambiguité une configuration *endo* à tous ces alcools.

4. Spectrographie de masse. La spectrographie de masse des métallocènes a été très étudiée, principalement dans le but de déterminer l'influence du métal sur la fragmentation de la molécule [28]. En série du ferrocène, ces études ont permis, en particulier, de définir les critères d'attribution des configurations endo-exo pour des alcools α -ferrocéniques [29,30]. En série du cymantrène, le problème de l'isomérie endo-exo n'a pas été abordé.

En série du ferrocène, nous avons dégagé quelques points essentiels de la comparaison des fragmentations relatives à deux isomères *endo* et *exo*, les ferrocéno-2,3 indanols-1 (III et VIII). L'existence, pour le dérivé *endo*, d'une forte "liaison hydrogène" entre l'hydroxyle et le nuage d'électrons entourant l'atome métallique doit avoir comme conséquence de permettre l'élimination plus ou moins facile de certains fragments tels que (OH), (Cp), (FeCpOH), (FeCp), pour cet isomère comparativement à l'alcool *exo*. Il s'ensuit des différences, significatives de la position de l'hydroxyle, entre les spectres des alcools *endo* III et *exo* VIII (Tableau 6).

TABLEAU 4

TABLEAU 5 CARACTÉRISTIQUES RMN DES ALCOOLS V, VIIa-c ET XIV

.

Im gm)	tration Pro	tons cyman	tréniques		Proton	méthiniqu	ic	Proton	hydroxyll	onb		
•	j/ш (.	9	m/i	9	m/i	5	J(Hz)	m/i	ş	J(Hz)		
,, 200	1/p	4.71	d/1	4,50	vers	4.45		1/p	1.30	7		-
100	T/P	4.71	d/1	4.50	vera	4.45		1/P	1,26	7		
VII. ² 200	d/1	4.70	d/1	4,65	d/1	3.81	7	d/1	1.17	7		
100	1/p	4.70	1/p	4,65	1/P	3.81	7	d/1	1.15	7		-
180	1/p	4.66	1/P	4.30	d/1	3,85	7	ц/р	1.37	2		
00 0011	d/1	4.66	d/1	4.30	d/1	3.85	7	I/p	1.28	7	•	
VIIc 200	1/p	4,48	d/1	4.30	d/1	3.76	7	d/1	1.00	7		
XIV 200	T/P	4,51	d/1	4.21			·	s/1 a	1.77			
100	1/p	4.61	I/p	4.21				2/1 a	1.75			

369

•

.

.'

•

.

(Fragment) ⁺	VIII, R	H =	111, R =	H	IVa, R = X = Cl-7	, II,	Xa, R =	hh	Xb, R = X = Cl-7	Ph,	XIa, R =	11 -	XIb, R = X = CI-7	Th,	u IIX	= CH ₃
	0/14	MIT	<i>0/m</i>	LINA	5		o/u	1/1 M			m/a	1/174			n/a	I// W
-		4111/4	-	e	m/e	I/IM			a/m	WI/I			m/c	IVI/I	2	
М	290	1	290		322	1	366	1	400	4	372	1	400	r.	304	1
М — ОН	273	1.6	273	0.7	307	0.08	349	0.47	383	0.14	365	1	389	0.9	287	0.8
$M - H_2O$	272	0.24	272	0.19	306	0,02	348	0.15	382	0,09	364	0,15	388	0,1	286	1.3
M - Cp	226	0.1	226	0,6	250	0,04	301	0.13	335	0.06	307	0.22	341		239	
$M - H_2 O - Cp$	207	0.1	207	0.1	241		283	0.03	317		289	0.30	323		221	0.5
M - FeCp.	160	0,1	169		203		245		279		261		285		183	
M - FeCp - R	168	0.0	168		202		168		202		167		201		168	
FeCp	121	1.5	121	0.61	121	0,11	121	0.93	121	0.28	121	1	121	0.61	121	0,83
CpFeOH	138	0.1	138	0.33	138	0.36	138	0,10	138	0.14	138	0,11	138	0.28	138	0.06
M - 138	152	1.7	152	1.3	186	3,2	228	4,1	262	3.36	234	10	268	11.85	166	1,2
M - 138 - H	161	1	161	0.76	185		227	1	261		233	0.05	267	0.35	165	1.2
M-138-Cl					151	0.71			226	1,35		0.05	233	1.28		
M-138-R	161	1	161	0.76	185		161	1,33	185		150	0.28	184	0,57	151	0'04
M - R	289	0.45	280	0.6	323	0.07	289	0,38	323	1.0.0	288	2,2	322	0.43	289	0,09
CpFeC ₅ H ₄ OH	202	0.85	202	0.52				-	73							
FeOH	73	0.68	73	0.40	73	0.23	73	0,1	73	0.1	73	-	73	~	73	0.43
Fo	66	0.50	56	0,40	56	0.35	56	0.15	56	0,2	66	0.70	56	0,9	56	0.50

TABLEAU 6 CARACTERISTIQUES DE MASSE (*m/c* et ///M) DES ALCOOLS FERROCENIC L'hydroxyle s'élimine seul plus facilement pour l'isomère *exo* que pour l'isomère *endo*. Ainsi, le pic m/e 273, correspondant au fragment (M - OH) est deux fois plus important dans le spectre de VIII que dans celui de III. De même, le pic m/e 272 $(M - H_2O)$ est plus fort pour l'isomère *exo*. Ces résultats sont en accord avec ceux que Gautheron et Broussier [30] ont signalés pour des ferrocéno-2,3 cyclohexanols.

Par contre, le départ indépendant du cycle non substitué est rendu plus aisé pour l'isomère *endo*. Pour l'alcool III, le pic m/e 225 (M — Cp) est six fois plus important que celui de VIII. L'ion formé est vraisemblablement stabilisé par la liaison hydrogène entre l'hydroxyle situé en *endo* et le nuage électronique qui entoure le métal.

Un autre conséquence de cette liaison réside, dans le comportement différent des deux isomères, lors de la rupture fer—cycle substitué. Pour l'isomère endo, celle-ci s'accompagne d'un transfert de l'hydroxyle sur le métal, faisant ainsi apparaître, dans le spectre de III, les pics m/e 138 (CpFeOH) et m/e 152, correspondant à (M - CpFeOH) ou à (M - Cp - FeOH). Pour l'isomère exo, cette rupture donne les fragments m/e 121 (FeCp), m/e 169 (M - FeCp) et m/e 168 (M- FeCp - H). De ces différences de fragmentation, deux critères d'attribution des configurations se dégagent:

— Par suite de fragmentations ou de recombinaisons ultérieures, le pics m/e 121 et m/e 138 ne sont pas respectivement caractéristiques de structures exo et endo mais par contre, leur intensité relative l'est, le rapport I_{138}/I_{121} étant beaucoup plus faible pour l'isomère exo [29,30]. Ainsi ce rapport est sept fois plus petit pour l'alcool VIII exo que pour son isomère endo, III.

— Le deuxième critère en faveur d'une structure exo est la présence des pics (M - FeCp) et (M - FeCp - H) pour les alcools secondaires ou (M - FeCp) et (M - FeCp - R) pour les alcools tertiaires, ces pics étant absents des spectres des composés *endo*.

Les critères dégagés de l'étude des alcools secondaires, appliqués aux spectres de masse des divers alcools tertiaires sont cohérents avec le type *endo* de ces alcools. En particulier, l'absence des fragments (M - CpFe) ou (M - CpFe - R), caractéristiques du site *exo*, est un fragment décisif. Signalons que les spectres de ces divers alcools ont un caractère commun remarquable, qui est la très grande intensité relative du pic (M - CpFeOH). L'importance de celui-ci suggère un départ massif du fragment CpFeOH, dû la forte liaison hydrogène.

En série du cymantrène, l'analyse des spectres de masse révèle également des fragmentations caractéristiques de la configuration des alcools (Tableau 7).

La présence, dans les spectres de VIc, VIIa, VIIb, VIIc, des pics m/e 128 (Mn(CO)₂OH), m/e 160 ($M - Mn(CO)_3$ OH) et m/e 232 (M - 3CO) associée à l'absence des pics m/e 299 (M - OH) et m/e 177 ($M - Mn(CO)_3$) ou ($M - (CO)_3 - Mn$) implique le départ de l'hydroxyle lié au manganèse lors de la rupture métal—cycle soit selon un processus comprenant le départ des trois carbonyles suivi de celui de l'ensemble Mn—OH, soit selon un processus avec élimination du bloc Mn(CO)₃OH.

Un parallèle, établi entre les deux séries ferrocénique et cymantrénique permet de généraliser les arguments retenus pour l'assignation des configurations *endo* ou *exo* des alcools. Il met en évidence que:

- le pic m/e 160 (M - Mn(CO)₃OH) ou (M - 3CO - MnOH) est l'équivalent

_					_		-	
(Fragment) ⁺	m/e	Vic	VIIa	VIIb	VIIc	XIV		
		1/124	1/1/1	171101	171M	m/e	I/IM	
M	316	1	1	1	1	330	1	
$M - H - CH_3$	300		0.53	0.23	0.52	314	0.61	
M - 16 - 2CO	244		0.40	0.36	0.52	258	0.80	
M - 16 - 3CO	216	0.69	1.65	1.62	2.60	230	2.00	
M - 2CO	260					274	0.67	
$M - 2CO - H_2O$	242					256	1.97	
M-OH	299					313	0.72	
$M - H_2O$	298					312	1.8	
$M - 3\overline{C}O$	232	2.68	2.56	1.85	1.54	246	1.79	
$M - 3CO - H_2$	230	0.40	1:10	0.58	0.51	244		
$M - 3CO - H_2O$	214	2.50	2.20	1.63	1.56	228	2.97	
$M - 3CO - H_2O - H_2$	212	4.5	2.85	1.85	1.58	226	1.38	
$M - Mn(CO)_3$	177					191		
$M - Mn(CO)_3 - H$	176					190		
Mn(CO) ₂ OH	128	3.15	2.79	2.00	1.55	128	1.84	
Mn(CO) ₃ OH	156					156		
M - 156	160	5.23	3.24	2.45	2.10	174	2.01	
M — 156 — H	159	1.68	2.41	1.91	1.24	173	2.27	
$M - 156 - H - H_2$	157	2.27	1.62	1.17	1.03	171	1.17	
MnOH	72	0.50	0.30	0.30	0.20	72	0.20	
Mn	55	0.77	0.49	1.00	0.32	55	0.61	

TABLEAU 7

CARACTÉRISTIQUES DE MASSE DES ALCOOLS CYMANTRÉNIQUES

du pic m/e 152 (M – FeCpOH) ou (M – Cp – FeOH) pour les ferrocéno-2,3 indanols-1 endo.

— les équivalents des pics caractéristiques du site *exo*, pour la série ferrocénique: (M - FeCp) et (M - FeCp - R), sont ici les pics m/e 177 $(M - \text{Mn}(\text{CO})_3)$ et m/e 176 $(M - \text{Mn}(\text{CO})_3 - H)$. Leur absence des spectres considérés est cohérente avec la configuration *endo* des alcools.

— la démonstration qui permet de conclure au départ groupé de Mn—OH, pour l'isomère endo, cymantrénique, est transposable à la série ferrocénique. Le spectre du ferrocéno-2,3 indanol-1 endo présente les pics m/e 225 (M — Cp) et m/e152 (M — Cp — FeOH), mais le pic m/e 169 (M — Cp — Fe) en est absent.

L'application des critères dégagés de l'étude des alcools secondaires au cas d'alcools tertiaires tels que l' α -hydroxy α -méthyl (β , β -diméthyltétraméthylène)-1,2 méthyl-5 cymantrène (XIV) permet d'affirmer que le spectre de masse de cet alcool présente les caractéristiques essentielles à la détermination d'une structure *endo*. En particulier, on note les fortes intensités des pics m/e 128 [Mn(CO)₂OH] et m/e 174 [$M - Mn(CO)_3OH$].

Signalons qu'il est possible, par analyse complète des pics relevés dans les spectres de masse de déterminer tous les facteurs de structure relatifs à ces composés, en précisant la position du groupement méthyle sur le noyau cymantrényle et celle du groupement diméthylé sur le cycle cyclohexanol.

Enfin, l'absence du pic m/e 215 ($M - (CO)_3OH$), ou sa très faible intensité, ainsi que celle du pic m/e 243 ($M - (CO)_2OH$) permettent de proposer, sur des bases solides, le métal comme site de la liaison hydrogène et non les carbonyles du greffon Mn(CO)₃.

Partie expérimentale

Appareillage

Relevés de fréquences IR: appareil Perkin—Elmer 221, à prisme en LiF; cellules de 2 cm en quartz infrasil; solvant: CCl₄. Spectres RMN: spectromètre VARIAN 60A, 60 Mc; température: 38°C; Solvant: deutérochloroforme; référence interne: TMS; mise en évidence des signaux hydroxyliques par emploi d'eua deutériée; déplacements chimiques exprimés en ppm δ . Spectres de masse: appareil Varian MAT CH 5; température de source: 250°C énergie d'ionisation: 70 eV. R_f : plaques de gel de silice G. Merck, 300 μ d'épaisseur; solvant d'élution: benzène anhydre. Analyses: pour tous les composés dont la formule moléculaire est donnée, les résultats de l'analyse centésimale (C et H) s'écartent au maximum de ±0.5% de la théorie. Solvant de recristallisation, mélange hexane/éther 3 : 1.

Synthèse des ferrocéno-2,3 indanones-1

Ferrocéno-2,3 indanone-1. Le rendement du mode opératoire indiqué par Bublitz et coll. [31] et été amélioré (30% au lieu de 10%) en diminuant la quantité de chlorure d'oxalyle nécessaire à la cyclisation de l'acide *o*-ferrocényl-benzoïque et en détruisant l'excès de nitrite de sodium utilisé pour la diazotation par de l'acide sulfamique. Une autre amélioration consiste à opérer en présence d'acétate de sodium pour tamponner le milieu.

Chloro-7 et chloro-6 ferrocéno-2,3 indanones-1. $C_{17}H_{11}$ ClFeO IIa, F. 126°C (rdt. 15%) et IIb, F. 95°C (rdt. 8%) obtenus par application du mode opératoire précédent aux acides chloro-5 et chloro-4 anthraniliques.

Réduction par les hydrures

Action de KBH₄. Dissoudre 2×10^{-3} mol de cétone dans 50 ml de méthanol; ajouter à cette solution 10 ml d'eau et 2 g de KBH₄. Abandonner le mélange réactionnel à température ambiante pendant 2 h. Après dilution par environ 200 ml d'eau, extraire l'alcool à l'éther, laver à l'eau, sécher sur carbonate de potassium et évaporer la solution éthérée sous vide. On obtient ainsi le ferrocéno-2,8 indanol-1 (III) [32], les chloro-7 et chloro-6 ferrocéno-2,3 indanols-1 (IVa), $C_{17}H_{13}CIFeO$, F. 133°C, R_f 0.41 et (IVb), R_f 0.40, soumis directement à l'étude IR, l'(α -hydroxytétraméthylène)-1,2 méthyl-3 cymantrène (V), $C_{13}H_{13}MnO_4$, F. 52°C; les α -hydroxy γ , γ ou β , β -diméthyltétraméthylène)-1,2 méthylcymantrènes $C_{15}H_{17}MnO_4$: VIa, huile, R_f 0.30; VIb, F. 120°C, R_f 0.33; VIc, F. 118°C, R_f 0.33; VIIa, F. 80°C, R_f 0.57; VIIb, F. 57°C, R_f 0.47 et VIIc, F. 103°C, R_f 0.65.

Action de NaBH₄. Elle est réalisée selon un processus opératoire similaire au précédent en substituant la pyridine à la solution hydrométhanolique. En absence d'eau, après 5 jours de contact, seules des traces d'alcool *endo* sont perceptibles. Par addition de quelques gouttes d'eau, on obtient la réduction complète de la cétone en alcool *endo*, précédemment issu de la réduction par KBH₄.

Action de LiAlH₄. A une suspension de 0.5 g $(15 \times 10^{-4}M)$ de LilH₄ dans 50 ml d'éther rigoureusement anhydre, réalisée dans un ballon à 3 tubulures muni d'un agitateur mécanique, d'un réfrigérant et d'une ampoule à brome, ajouter goutte à goutte et sous bonne agitation, la solution de 4×10^{-3} mol de cétone dans 50 ml d'éther. Après chauffage à reflux pendant 2 h, hydrolyser, après refroidissement, par 10 ml d'eau et 50 ml d'HCl au 1/10e. Décanter la solution

éthérée, la laver jusqu'à neutralité, la sécher sur sulfate de magnésium et évaporer sous vide. L'application de ce mode opératoire à l'(α -oxo β , β -diméthyltétraméthylène)-1,2 méthyl-4 cymantrène conduit exclusivement à l'alcool *endo* VIIb. Dans le cas des (α -oxotétraméthylène)-1,2 méthyl-3 cymantrène et ferrocéno-2,3 indanone-1 on isole, par chromatographie des mélanges bruts sur colonne d'alumine acide dés activée (éluant, mélange éther de pétrole/éther 4 : 1) outre les alcools *endo* V ou III déjà obtenus, l'(α -hydroxytétraméthylène)-1,2 méthyl-3 cymantrène *exo* (IX) (huile) ou le ferrocéno-2,3 indanol-1 *exo* (VIII), C₁₇H₁₄FeO, F. 95°C.

Action des réactifs de Grignard. Ferrocéno-2,3 phényl-1 indanol-1 endo (Xa), $C_{23}H_{18}OFe$, F. 135°C, R_f 0.68, (rdt. 70%). Ajouter goute à goutte, à une suspension de 0.4 g (0.05 at. g) de magnésium dans 10 ml d'éther anhydre réalisée dans un ballon à trois tubulures muni d'un agitateur mécanique, 2.4 g (15×10^{-3} mol) de bromobenzène. Chauffer le mélange sous agitation au bain-marie, jusqu'à disparition du magnésium. Après refroidissement, ajouter sous agitation, 2.9 g (0.01 mol) de cétone I en solution dans 200 ml d'éther. Porter à ébullition pendant 2 h puis hydrolyser par 35 g de glace et 1.5 g de NH₄Cl. Décanter la phase éthérée, la laver à l'eau, la sécher et l'évaporer sous vide. Le chloro-7 ferrocéno-2,3 phényl-1 indanol-1 endo (Xb), $C_{23}H_{17}OCIFe$, F. 125°C, R_f 0.74, (rdt. 10%) est obtenu selon le même mode opératoire.

Ce processus expérimental appliqué aux cétones I et IIa à partir de bromo-2 thiophène donne les ferrocéno-2,3 thiényl-1 indanol-1 endo (XIa), $C_{21}H_{16}OSFe$, F. 95°C, R_f 0.60, (rdt. 40%) et chloro-7 ferrocéno-2,3 thiényl-1 indanol-1 endo (XIb), $C_{21}H_{15}OCISFe$, F. 112°C, R_f 0.69 (rdt. 10%).

L'emploi d'iodure de méthyle conduit, selon le même mode opératoire réalisé à partir de la ferrocéno-2,3 indanone-1 au ferrocéno-2,3 méthyl-1 indanol-1 endo (XII), $C_{1s}H_{1s}FeO$, F. 13 7°C, R_f 0.71 (rdt. 65%) et à partir des (α -oxotétraméthylène)-1,2 méthyl-5 cymantrène et (α -oxo β , β -diméthyltétraméthylène)-1,2 méthyl-5 cymantrène aux (α -hydroxy α -méthyltétraméthylène)-1,2 méthyl-5 cymantrène endo (XIII), $C_{14}H_{15}MnO_4$, F. 45°C, R_f 0.47, (rdt. 65%) et (α -hydroxy α -méthyl β , β -diméthyl-tétraméthylène)-1,2 méthyl-5 cymantrène endo (XIV), $C_{16}H_{19}MnO_4$, F. 75°C, F_f 0.63, (rdt. 60%).

Préparation des acétates

Ferrocéno-2,3 acétoxy-1 indène endo, $C_{19}H_{16}FeO_2$, F. 103°C (Litt. [32] 91°C) (α -acétoxytétraméthylène)-1,2 méthyl-3 cymantrène $C_{15}H_{15}MnO_5$, F. 58°C, (rdt. 90%) et (α -acétoxy β , β -diméthyl-tétraméthylène)-méthyl-4 cymantrène $C_{17}H_{19}MnO_5$, F. 63°C, (rdt. 85%): Réaliser une solution de 10^{-2} mol de cétone dans un mélange de 20 ml de pyridine et 30 ml d'anhydride acétique qui est abandonnée 12 h à température ambiante avant d'être diluée par 250 ml d'eau glacée. Extraire à l'éther; laver la phase organique à l'eau acidulée, puis à l'eau jusqu'à neutralité, la purifier par filtration sur alumine, la sécher et l'évaporer sous vide.

Solvolyse des acétates

Ferrocéno-2,3 indanol-1 *exo*: chauffer à ébullition 2.5 g dans 800 ml d'un mélange acétone/eau à 80% d'acétone, pendant 70 h. Après dilution, extraire à

l'éther et purifier sur alumine. On isole ainsi 600 mg d'alcool *exo* à partir du ferrocéno-2,3 acétoxy-1 indène (rdt. 40%).

Bibliographie

- 1 D.S. Trifan et R. Bacskai, Tetrahedron Lett., (1960) 1.
- 2 (a) H. Falk et K. Schlögl, Monatsh. Chem., 96 (1965) 266; (b) H. Falk et K. Schlögl, Monatsh. Chem., 96 (1965) 1065.
- 3 G. Jaouen et R. Dabard, Bull. Soc. Chim. Fr., (1974) 2009.
- 4 W.R. Jackson et T.R.B. Mitchell, J. Chem. Soc. B, (1969) 1228.
- 5 M.G. Combe et H.B. Henbest, Tetrahedron Lett., (1969) 404.
- 6 M. Le Plouzennec et R. Dabard, C.R. Acad. Sci. Paris, Sér. C, 268 (1969) 1721.
- 7 H. Falk, K. Schlögl, W. Steyrer, Monatsh. Chem. 97 (1966) 1029.
- 8 M. Le Plouzennec et R. Dabard, Bull. Soc. Chim. Fr., (1972) 3600.
- 9 E.A. Hill et J.H. Richards, J. Amer. Chem. Soc., 83 (1961) 4216.
- 10 P. Dixneuf et R. Dabard, Bull. Soc. Chim. Fr., (1972) 2847.
- 11 G. Brule, Thèse 3e cycle, Rennes, 1969.
- 12 M. Cais, Organometal. Chem. Rev., 1 (1966) 435.
- 13 R. Gleiter et R. Seeger, Helv. Chim. Acta, 54 (1971) 1217.
- 14 (a) E.A. Hill et J.H. Richards, J. Amer. Chem. Soc., 83 (1961) 3840; (b) J.J. Dannenberg, M.K. Levenberg et J.H. Richards, Tetrahedron, 29 (1973) 1575.
- 15 R.G. Sutherland, J.R. Sutton et W.M. Horspool, Tetrahedron Lett., (1973) 3283.
- 16 S. Braun, T.S. Abram et W.E. Watts, J. Organometal. Chem., 97 (1975) 429.
- 17 (a) J.C. Ware et T.G. Traylor, Tetrahedron Lett., (1965) 1295; (b) T.T. Tidwell & T.G. Traylor, J. Amer. Chem. Soc., 88 (1966) 3442; (c) T.G. Traylor et J.C. Ware, J. Amer. Chem. Soc., 89 (1967) 2304.
- 18 E.A. Hill et R. Wiesner, J. Amer. Chem. Soc., 91 (1969) 509.
- 19 W.S. Trahnovsky et D.K. Wells, J. Amer. Chem. Soc., 91 (1969) 5870.
- 20 W.E. McEven, J.A. Manning et J. Kleinberg, Tertrahedron Lett., (1964) 2195.
- 21 A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova et I.B. Zlotina, Izv. Akad. Nauk SSSR, Ser. Khim., 4 (1966) 729.
- 22 N.M. Loim, L.A. Malutshenko, Z.N. Parnes et D.N. Kursanov, J. Organometal. Chem., 108 (1976) 363.
- 23 D.S. Trifan et R. Bacskai, J. Amer. Chem. Soc., 82 (1960) 5010.
- 24 K. Schlögl, M. Fried et H. Falk, Monatsh. Chem., 95 (1964) 576.
- 25 B. Gautheron et J. Tirouflet, C.R. Acad. Sci., Paris, sér. C, 265 (1967) 273.
- 26 W.R. Jackson et C.H. McMullen, J. Chem. Soc., (1965) 1170.
- 27 M. Rosenblum et E.W. Abbate, J. Amer. Chem. Soc., 88 (1966) 4178.
- 28 M. Cais et M.L. Lupin, Adv. Organometal. Chem., 8 (1970) 211.
- 29 H. Egger, Monatsh. Chem., 97 (1966) 602.
- 30 B. Gautheron et R. Broussier, Bull. Soc. Chim. Fr., (1971) 3636.
- 31 D.E. Bublitz, W.E. McEven et J. Kleinberg, J. Amer. Chem. Soc., 84 (1962) 1845.
- 32 M. Cais, A. Modiano et A. Raveh, J. Amer. Chem. Soc., 87 (1965) 5607.
- 33 M. Le Plouzennec et R. Dabard, J. Organometal Chem., 112 (1976) 333.